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We applied to an open flow a proper orthogonal decomposition �POD� technique, on two-dimensional �2D�
snapshots of the instantaneous velocity field, to reveal the spatial coherent structures responsible for the
self-sustained oscillations observed in the spectral distribution of time series. We applied the technique to 2D
planes out of three-dimensional �3D� direct numerical simulations on an open cavity flow. The process can
easily be implemented on usual personal computers, and might bring deep insights regarding the relation
between spatial events and temporal signature in �both numerical or experimental� open flows.
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One of the most challenging questions arising in open
flows such as jets, mixing layers, etc., is to understand the
occurrence and nature of robust and reproducible self-
sustained oscillations revealed in spatially localized time se-
ries, usually velocity, or pressure measurements. How such
frequencies appear, and whether or not they might be the
signature of particular coherent spatial patterns, still remain
largely unresolved, although abundantly documented �1,2�.
Such an understanding may, moreover, appear of the utmost
importance in control applications, in that knowing which
spatial event is generating such spectral signature may lead
to the best-fitted control scheme with respect to the required
goal. An example is given by flows over open cavities, as in
high-speed trains, that generate very powerful self-sustained
oscillations that appear to be the main source of noise emit-
ted by the train. In that case, control will be aimed to reduce
or even suppress the source of noise, without reducing the
aerodynamic performances, and at the lowest energetic cost.

In this paper we �i� show in a test case the ability of the
proper orthogonal decomposition �POD� technique to associ-
ate self-sustained oscillations to well-identified spatial coher-
ent structures; �ii� confirm, as a consequence, the mixing
layer origin of the most energetic self-sustained oscillations
in an open cavity flow. We will show that two-dimensional
�2D� cuts out of the fully three-dimensional �3D� flow are
sufficient to extract significant space-time events out of the
flow. We are using for that purpose a technique based on an
empirical decomposition of the flow that optimizes a basis of
�orthogonal� eigenmodes with respect to the kinetic energy.
The technique is often known as the proper orthogonal de-
composition in the framework of fluid dynamics �3,4�, or as
the Karhunen–Loève decomposition in the framework of sig-
nal processing �5�. �Other denominations exist, such as em-
pirical orthogonal decomposition, singular value decomposi-
tion, etc., depending on the field of application considered.�
To illustrate our point, we applied the technique to 3D direct
numerical simulations of an air flow over an open cavity �6�.
The system is a cavity of length L=10 cm along x �the lon-
gitudinal direction along which air is flowing�, of depth
h=5 cm �the aspect ratio L /h is 2�, and transverse
size l=20 cm. The cavity is enclosed in a vein 12 cm high.
The flow-rate velocity is U0=1.2 m/s �Reynold’s number
Re�8500�. Simulations were performed following a finite-
volume approach under an incompressible flow hypothesis.
Spatial and time discretization have a second-order preci-
sion. The pressure field is given by a Poisson’s equation that

requires a projection step, in order to be in agreement with a
nondivergent velocity field. In order to reduce the CPU time
cost, the spanwise boundary conditions are periodic. The
256�128�128 mesh-spatial grid is refined in areas featur-
ing strong velocity gradients �boundary and shear layers�—
with a mesh varying from 0.7 to 10 mm along the longitudi-
nal x and vertical y directions, and constant with about
1.56 mm over the transverse direction z �7�. The input
boundary layer is of Blasius type �velocity profile solution of
the simulations�.

Here we briefly expose the POD technique we imple-
mented. The goal is to compute the eigenmodes

��n�t� ,�� n�r��� that best fit the coherent structures composing
the flow, computed from a database of M different snapshots
of the velocity field, in such a way that any instantaneous
snapshot of the database can be reconstructed by performing
the sum over the eigenmode basis,

u��r�,t� = �
n=1

M

�n�n�t��� n�r�� , �1�

where �n=�n
2 are the eigenvalues of the decomposition �3�.

Typically M was of the order of 600 frames. Note that u�

being a vector field, �� must also be; however, we will also
use the notation � when dealing with one component of the
field �usually it will be the longitudinal component along x�.
A coherent structure can now be defined as an eigenmode of
a �2-pointwise linear� correlation matrix built on the database
snapshots. There exist mainly two ways of building up a
correlation matrix: either performing a time correlation or a
space correlation. With snapshots u��r� , t� of size N=Nx�Ny

pixels �where Nx�125 and Ny �100 are, respectively, the
snapshot dimensions along x and y�, the space-correlation
matrix

K�r�,r��� = 	
0

tM

up�r�,t�uq�r��,t�dt

is of size 2N2 �up,q are velocity components�. We restricted
our analysis to the x ,y components of the velocity field so as
to mimic what is available from 2D experimentalParticle Im-
age Velocimetry �PIV� snapshots. On the contrary, the time-
correlation matrix
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C�t,t�� =	 	
S

u��r�,t�u��r�,t��dr�

is of size M2, much smaller than �2N�2 �3.6�104 versus 4
�108�. Keeping in mind that no more information can be
extracted from that contained in the database itself, and that
at most M relevant eigenmodes are therefore available from
the data set, we chose the second way �based on C�t , t���,
known as the snapshot POD technique in the literature
�4,9,10�. Practically, we start with a database of M instanta-
neous spatial snapshots of the velocity field; in experiments
they can, for example, be obtained using PIV techniques �8�.
Then, the data are reshaped into a “data matrix” A whose
column elements are the pixels of a given snapshot. For that
purpose, each 2D snapshot is reshaped into a column vector
�of length N�, by stacking over each other all the columns of
the snapshot, from the first to the last. Both x and y compo-
nents of the �vector� velocity field are further stacked in the
same column following the same procedure, starting with
component x at the top of the column, and then the compo-
nent y, down to the bottom of the column. The vertical size
of A is therefore 2N. The matrix A contains as many col-
umns as snapshots in the database �so that its horizontal di-
mension is M�, the snapshots being ranked from the left to
the right of A as the time is flowing down. The matrix A is
therefore of dimension M �2N. The correlation matrix C is
next obtained by performing the product C=At ·A, where At

is the transposed matrix of A, and · the usual matrix dot
product. �Note that the space-correlation matrix K is given
by K=A ·At.� Applying a singular value decomposition pro-
cedure on C, we obtain the eigenmodes �n�t�, rearranged as
columns of a chronos �10� matrix � from left with n=1 to

right with n=M. The spatial eigenmodes �� n�r�� �sometimes
called topos in the literature �10�� are given following Eq. �1�
by �� n�r��=1/�n
�n�t�u��r� , t�dt. The �� n are reshaped into col-
umns of a topos matrix �= �A ·�� ·D−1/2, following the
same procedure as A, where D is the diagonal matrix of the
eigenvalues �n, ranked from the largest to the smallest value.
The MATLAB© software is dedicated to matrix operations, so
that the whole process of building A, calculating C, perform-
ing the singular decomposition to obtain the �n, and deter-
mining the �n, takes, for M =600 and N�37 300, no more
than 30 sec on a usual PC.

We first present in Fig. 1 the spectral distribution of time
series provided by local recordings of one component of the
velocity field �here the longitudinal component ux�t��. Veloc-
ity recordings are done at four different locations: two within
the mixing layer �one upstream, one downstream�, and two
within the cavity �upstream and downstream�. In each of
them clearly appear peaks at about f0=13.5 Hz �Strouhal
number St=1.06 when based on the cavity length L and the
reference velocity; St=0.033 when based on the mixing layer
thickness and the mean velocity—to be compared with the
natural Strouhal number Stn=0.03 of an unforced mixing
layer �2��, and it is now well accepted that this frequency is
produced by the instability of the mixing layer �1�. The spec-
tral component is recovered anywhere in the cavity, presum-
ably due to the overall pressure field coupling due to the fluid
incompressibility �the Mach number is about 4�10−3�.

Now we propose to apply our technique so as to identify

the spatial coherent structures �� n�r�� of the flow fluctuations
�with respect to the main velocity field�, and track out their
dynamical features from their associated time-dependent am-
plitudes �n�t�. Note that the snapshots here must be sampled
at least at 2f0�30 Hz if we want to be time resolved with
respect to f0 �Shannon criterion�. This was actually achieved
in the numerical simulations.

In Fig. 2 we clearly see that the POD decomposes the
flow into two well-defined areas: one is the mixing layer
over the cavity, essentially captured by the two first eigen-
modes �1,2; the other is the cavity vortices, captured by the
higher-order �less energetic� eigenmodes. The two first
modes look very similar, and actually could be phase squared
as expected when the flow is experiencing a global mean
advection �phase squaring resulting in that case from the
space translation invariance� �3�. However, when comparing
the eigenvalues �1,2 plotted in Fig. 3�a�, they appear to be
rather different, and not close to each other, as should be
expected in a phase squaring situation. Moreover, when plot-
ting chronos �2�t� versus �1�t� �Fig. 3�b��, a torus is drawn
whose dispersion cannot be explained by numerical noise.
Henceforth, it rather looks like if the two first modes were
not two degenerated phase aspects of a unique “complex”
mode, but really two different POD modes, although some-
how coupled �so as to produce the torus shape of Fig. 3�b��.
This invokes a symmetry breaking in the flow advection,
most likely due to the downstream corner of the cavity. In the
discussion on whether the instability is convective or abso-
lute, note the downstream corner location of the two first

topos �� 1,2, whose amplitude is vanishing in the upstream
area. This is a strong argument in favor of the convective
nature of the instability, the upstream front of the instability
wave packet being expected to spread back against the flow
advection in an absolutely unstable situation. A global mode
cannot be completely excluded however �2�.

In Fig. 4 are shown the five first time series �n�t� and
their spectral distribution. We clearly see the occurrence of
the frequency f0=13.5 Hz associated with the two first chro-

FIG. 1. Power spectral distribution of the x-component velocity
time series collected in the mixing layer �a� upstream and �b� down-
stream, within the cavity, �c� upstream and �d� downstream, from
3D direct numerical simulations.
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nos, the corresponding topos featuring the coherent
structures contained in the mixing layer. Clearly, the fre-
quency turns out to be associated with the instability that
develops in the mixing layer. While local time series all pro-
duce spectral components at f0 �see Fig. 1�, the POD instead
is able to overcome this global flow coherence and to selec-
tively associate the spectral components to the adequate spa-
tial coherent structures. This result henceforth naturally con-
firms the mixing layer origin of the most energetic spectral
component.

At this step, it might be interesting to briefly discuss some
critical points of the technique. First, because the method is
aimed to track out coherent patterns encountered within a
flow �coherent with respect to the pointwise correlation ma-
trices�, it is important for the statistical flow properties to be
stationary. As a consequence, the data set must possess a
sufficiently important number of independent realizations so

as to ensure the convergence of the decomposition towards
the real POD modes. We have checked that for a data set of
less than 400 samples, the third mode fairly mixes both shear
layer and cavity structures, resulting in its time amplitude
Fourier spectrum to the occurrence of the 13.5-Hz peak—
strongly weakened here in mode 3 when using 600 samples.
Secondly, from an experimental point of view, each sample
composing the data set should share identical �statistical�
properties; as a consequence, when directly working on in-
stantaneous snapshots of the flow, particule feeding should
remain homogeneous over time, the average intensity and
coherent structure resolution being modified as the feeding is
varying—therefore biasing the statistical representativity of
the samples �8�. There are no systematic tests to decide
whether statistical convergence has been reached or not. We,
however, plotted in Fig. 5 the average difference � between
two modes with respect to the data set number of snapshots,

��p� =
1

N
	

S
���1

p+1�r�� − ��1
p�r���dr ,

where �n
p�r� is the nth topos computed using p snapshots in

the data set for the single x component of the velocity. �Note:
we had to deal with the absolute value of the topos to get rid
of the sign, since cyclic global sign inversions from �1

p to
�1

p+1, without deep modification of the velocity structure,
were observed�. Figure 5 suggests that convergence is en-
sured for mode 1 with p�400 flow realizations.

FIG. 2. The six first spatial
eigenmodes �topos �n�r�� with
n=1 to 6 from �a� to �f��. The ar-
rows represent the velocity vector
in the plane of the mode �here
components x and y�.

FIG. 3. �a� Singular value decomposition spectrum. Note the
two first eigenvalues, which are not equal. �b� Phase portrait of
�2�t� vs �1�t�.
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The study reported here in fact brings another very inter-
esting insight from an experimental point of view. It indeed
shows that, although the velocity field is spatially fully 3D
and characterized by three components �11�, a 2D POD cal-

culation �performed in a plane�, over two velocity compo-
nents, is able to separate the two intuitive regions of interest
in the flow �namely the mixing layer and the cavity vortices�,
which therefore strongly simplifies any experimental proto-
col, in that a classical PIV �in a plane, over two velocity
components� is sufficient to track out the coherent structures
and their dynamical features, without having to call upon 3D
PIV techniques. We have checked that the results were very
similar when using 1 or 3 velocity components instead of 2.
Moreover, the 3D calculation of the POD modes confirms all
the results provided by the 2D analyses; 2D cuts out of the
3D modes look very similar to our �intrinsically� 2D modes,
and their amplitude spectral distributions are comparable as
well �see �11��.

In conclusion, a POD technique has been applied with
success to discriminate the relevant dynamical features of the
coherent structures present in the flow over an open cavity.
The processing time revealed to be of the order of 30 s for
about 600 samples of size 37 300 pixels, and grew up to
11 min when applied to about 300 experimental PIV samples
of size 241.800 pixels �N=260�465�. However, in most ex-
perimental applications, the whole field resolution, or the
whole picture area, is not required to get the expected results,
and it is expected that the technique could efficiently be ap-
plied to a panel of other open flows presenting self-sustained
oscillations.

MATLAB programs can be obtained from the authors upon
request.
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FIG. 4. From �a� to �e�: five first time eigenmodes �chronos
�n�t� with n=1 to 5�. From �f� to �j�: associated eigenmode power
spectral distributions.

FIG. 5. Convergence test of mode 1 passing from p samples to
p+1 in the data set. See text for a description of the � criterion.
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